skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "MacGregor, Joseph A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present Bedmap3, the latest suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60 °S. Bedmap3 incorporates and adds to all post-1950s datasets previously used for Bedmap2, including 84 new aero-geophysical surveys by 15 data providers, an additional 52 million data points and 1.9 million line-kilometres of measurement. These efforts have filled notable gaps including in major mountain ranges and the deep interior of East Antarctica, along West Antarctic coastlines and on the Antarctic Peninsula. Our new Bedmap3/RINGS grounding line similarly consolidates multiple recent mappings into a single, spatially coherent feature. Combined with updated maps of surface topography, ice shelf thickness, rock outcrops and bathymetry, Bedmap3 reveals in much greater detail the subglacial landscape and distribution of Antarctica’s ice, providing new opportunities to interpret continental-scale landscape evolution and to model the past and future evolution of the Antarctic ice sheets. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Radio-echo sounding (RES) has revealed an internal architecture within both the West and East Antarctic ice sheets that records their depositional, deformational and melting histories. Crucially, RES-imaged internal-reflecting horizons, tied to ice-core age–depth profiles, can be treated as isochrones that record the age–depth structure across the Antarctic ice sheets. These enable the reconstruction of past climate and ice dynamical processes on large scales, which are complementary to but more spatially extensive than commonly used proxy records (e.g. former ice limits constrained by cosmogenic dating or offshore sediment sequences) around Antarctica. We review the progress towards building a pan-Antarctic age–depth model from these data by first introducing the relevant RES datasets that have been acquired across Antarctica over the last 6 decades (focussing specifically on those that detected internal-reflecting horizons) and outlining the processing steps typically undertaken to visualise, trace and date (by intersection with ice cores or modelling) the RES-imaged isochrones. We summarise the scientific applications for which Antarctica's internal architecture has been used to date and present a pathway to expanding Antarctic radiostratigraphy across the continent to provide a benchmark for a wider range of investigations: (1) identification of optimal sites for retrieving new ice-core palaeoclimate records targeting different periods; (2) reconstruction of surface mass balance on millennial or historical timescales; (3) estimation of basal melting and geothermal heat flux from radiostratigraphy and comprehensive mapping of basal-ice units to complement inferences from other geophysical and geological methods; (4) advancement of the knowledge of volcanic activity and fallout across Antarctica; and (5) refinement of numerical models that leverage radiostratigraphy to tune time-varying accumulation, basal melting and ice flow, firstly to reconstruct past behaviour and then to reduce uncertainties in projecting future ice-sheet behaviour. 
    more » « less
    Free, publicly-accessible full text available October 20, 2026
  3. Abstract. Radio-echo sounding (RES) has revealed an internal architecture within Antarctica’s ice sheets that records their depositional, deformational and melting histories. Crucially, spatially-widespread RES-imaged internal-reflecting horizons, tied to ice-core age-depth profiles, can be treated as isochrones that record the age-depth structure across the Antarctic ice sheets. These enable the reconstruction of past climate and ice-dynamical processes on large scales, which are complementary to but more spatially-extensive than commonly used proxy records across Antarctica. We review progress towards building a pan-Antarctic age-depth model from these data by first introducing the relevant RES datasets that have been acquired across Antarctica over the last six decades (focussing specifically on those that detected internal-reflecting horizons), and outlining the processing steps typically undertaken to visualise, trace and date (by intersection with ice cores, or modelling) the RES-imaged isochrones. We summarise the scientific applications to which Antarctica’s internal architecture has been applied to date and present a pathway to expanding Antarctic radiostratigraphy across the continent to provide a benchmark for a wider range of investigations: (1) Identification of optimal sites for retrieving new ice-core palaeoclimate records targeting different periods; (2) Reconstruction of surface mass balance on millennial or historical timescales; (3) Estimates of basal melting and geothermal heat flux from radiostratigraphy and comprehensively mapping basal-ice units, to complement inferences from other geophysical and geological methods; (4) Advancing knowledge of volcanic activity and fallout across Antarctica; (5) The refinement of numerical models that leverage radiostratigraphy to tune time-varying accumulation, basal melting and ice flow, firstly to reconstruct past behaviour, and then to reduce uncertainties in projecting future ice-sheet behaviour. 
    more » « less
  4. Abstract. Direct observations of the size of the Greenland Ice Sheet during Quaternary interglaciations are sparse yet valuable for testing numerical models of ice-sheet history and sea level contribution. Recent measurements of cosmogenicnuclides in bedrock from beneath the Greenland Ice Sheet collected duringpast deep-drilling campaigns reveal that the ice sheet was significantlysmaller, and perhaps largely absent, sometime during the past 1.1 millionyears. These discoveries from decades-old basal samples motivate new,targeted sampling for cosmogenic-nuclide analysis beneath the ice sheet.Current drills available for retrieving bed material from the US IceDrilling Program require < 700 m ice thickness and a frozen bed,while quartz-bearing bedrock lithologies are required for measuring a largesuite of cosmogenic nuclides. We find that these and other requirementsyield only ∼ 3.4 % of the Greenland Ice Sheet bed as asuitable drilling target using presently available technology. Additionalfactors related to scientific questions of interest are the following: which areas of thepresent ice sheet are the most sensitive to warming, where would a retreating icesheet expose bare ground rather than leave a remnant ice cap, andwhich areas are most likely to remain frozen bedded throughout glacialcycles and thus best preserve cosmogenic nuclides? Here we identifylocations beneath the Greenland Ice Sheet that are best suited for potentialfuture drilling and analysis. These include sites bordering Inglefield Landin northwestern Greenland, near Victoria Fjord and Mylius-Erichsen Land innorthern Greenland, and inland from the alpine topography along the icemargin in eastern and northeastern Greenland. Results from cosmogenic-nuclide analysis in new sub-ice bedrock cores from these areas would help to constrain dimensions of the Greenland Ice Sheet in the past. 
    more » « less
  5. Abstract Recent acceleration and thinning of Thwaites Glacier, West Antarctica, motivates investigation of the controls upon, and stability of, its present ice-flow pattern. Its eastern shear margin separates Thwaites Glacier from slower-flowing ice and the southern tributaries of Pine Island Glacier. Troughs in Thwaites Glacier’s bed topography bound nearly all of its tributaries, except along this eastern shear margin, which has no clear relationship with regional bed topography along most of its length. Here we use airborne ice-penetrating radar data from the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA) to investigate the nature of the bed across this margin. Radar data reveal slightly higher and rougher bed topography on the slower-flowing side of the margin, along with lower bed reflectivity. However, the change in bed reflectivity across the margin is partially explained by a change in bed roughness. From these observations, we infer that the position of the eastern shear margin is not strongly controlled by local bed topography or other bed properties. Given the potential for future increases in ice flux farther downstream, the eastern shear margin may be vulnerable to migration. However, there is no evidence that this margin is migrating presently, despite ongoing changes farther downstream. 
    more » « less